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ABSTRACT

Aims. This report aims to determine whether an observed infra-red oscillating source is characteristic of the periodic variation of a
pulsar, and further to determine the fundamental frequency of oscillation.
Methods. The signal was analysed by using a fourier transform to produce a power spectrum for the pulsar as a function of frequency.
The fundamental frequency was then further constrained by phase binning where the standard deviation was used as a measure of
structure within the phase-binned signal, and the maximum was taken as a more precise estimate of the fundamental frequency. A
synthetic signal was then generated using a Least Squares fit of a sinusoidal function fitted to the fundamental frequencies and higher
harmonics, and the fourier transform of this was compared to the fourier transform of the original signal.
Results. The signal was determined to be characteristic of a pulsar given strong periodic features in the fourier transform. The
fundamental frequency was estimated as 30.3 ± 1 Hz from this method and the locations of the other frequency peaks were explained
as either harmonics (frequency below the Nyquist limit) or shifted aliased harmonics (frequency above the Nyquist limit). The phase
binning method generated an estimate of the fundamental frequency of 29.9+0.42

−0.22 Hz . Both estimates were within error of each other.
The generated synthetic signal had a strong qualitative resemblance to the original signal and the fourier transform recreated the
aliased peaks and the relative heights of the peaks.

1. Introduction

Pulsars, famously discovered by Dame Jocelyn Bell Burnell in
1968 (Hewish et al. 1968), are compact pulsating EM sources.
Initially discovered in the radio band, these radio pulsars had
stable periodic oscillations of around 1 second. They were iden-
tified as highly magnetised, fast rotating neutron stars, with in-
credibly high densities up to 1018kg/m3 (Longair 2010). Pulsars
were subsequently discovered to emit throughout the EM spec-
trum, including into gamma-rays.

Pulsars can rotate much faster than this, with the fastest-
spinning pulsar PSR J1748-2446ad spinning at 716 Hz (Hessels
et al. 2006). The theoretical limit is thought to be around 1500
Hz, where the pulsar would no longer be bound under the virial
theorem and break apart (Cook et al. 1994). Pulsars with a rota-
tional period between 1 and 10 milliseconds are known as mil-
lisecond pulsars, and are thought to be old pulsars which have
been "spun-up" by the accretion of matter from a binary com-
panion (Tauris and van den Heuvel 2006).

The extreme rotation develops as a consequence of conser-
vation of angular momentum. A pulsar is a stellar remnant of a
massive star, which collapses to around 10km in radius, a fac-
tor of 10−5 or less of its original radius (Rybicki and Lightman
2008, Özel et al. 2009).The stars moment of inertia I ∝ r−2 will
decrease and therefore the rate of rotation will have to increase so
angular momentum is conserved. The same is true of the mag-
netic field of the star, with the magnetic flux increasing as the
radius decreases due to conservation of magnetic flux. With B
∝ r−2, for a sunlike star with a magnetic field of around 10−2 T,
the same 10−5 decrease in radius would result in a magnetic field
of 108 T (Longair (2010)).

Non-rotating neutron stars have an upper-mass limit given by
Tolman-Oppenheimer-Volkoff (TOV) limit, initially computed

in Bombaci (1996) as 1.5M� < Mch < 3M�, and later further
constrained to Mch ≈ 2.3M� (Shibata et al. 2019). The limit
depends on the balance between the gravitational force and the
strong force repulsion of neutrons. Pulsars rotate so rapidly that
the outward centripetal acceleration acts to increase this limit by
18 − 20% (Rezzolla et al. 2018, Cho 2018).

A neutron star is formed when a star <20M� undergoes a
Type 2 SNe due to a breakdown of hydrostatic equilibrium, shed-
ding its outer shells of hydrogen and helium as its core of heavier
elements collapses. The electrons and protons in the relativistic
degenerate electron gas in the core are subjected to such intense
pressures during the collapse that they combine to neutrons via
the process of neutronisation (inverse β decay).

p + e− → n + ve (1)

The neutrons cannot decay back into protons as the electron has
no available states to move into. By this process almost all of the
remaining matter is converted into neutrons. The exact structure
of a neutron star is still the subject of much theoretical debate
(Shapiro et al. 1983, Camenzind 2007, Lattimer and Prakash
2001) but they are thought to be made up almost entirely of neu-
trons.

Throughout the neutron star there would still be normal rela-
tivistic degenerate electron gas, which is why the magnetic field
could still be generated within the star. There is significant obser-
vational evidence for these strong magnetic fields, such as the de-
tection of cyclotron radiation from the pulsar Her X-1 in Daugh-
erty and Ventura 1977. Camilo et al. 2000 estimates magnetic
fields for two pulsars of around 109 T from the derived charac-
teristic spin down age. Pulsars lose energy by magnetic brak-
ing (Johnston and Karastergiou 2017), causing their rotational
speed to slowly decrease over time. Measurement of Ṗ (rate of

page 1 of 10



change of period) allows direct determination of the magnetic
field strength of the pulsar.

It is the misalignment of the rotation and magnetic axis that
cause the characteristic "lighthouse" effect. The pulsar emits
charged particles from the magnetic poles, which sweep across
the sky, with one of the poles pointing along the line of sight
of the observer for a fraction of every rotation. This produces a
periodic sinusoidal pattern of radiation intensity which is very
stable. Many pulsars have frequencies so stable they uniquely
identify the pulsar, which has led to suggestions of the develop-
ment of a pulsar-based GPS-like system for spacecraft (BUIST
et al. 2011).

In this paper I will analyse a signal containing a potential
pulsar and look for this characteristic periodic signal. I will also
determine an estimate of the fundamental frequency of the pulsar
using fourier analysis and phase-binning techniques.

2. Theory

There are a few main categories of techniques for the analysis of
periodic signals.

1. Fourier methods
2. Phase-binning methods
3. least squares methods

I will explain the theory behind some of the relevant methods
for determining the fundamental frequency of a pulsar.

Firstly I will look at the theoretical continuous Fourier trans-
form, which says that a continuous signal F(t) can be converted
into a signal in frequency space F( f ) by the following equation
where f is frequency, t is time and i is

√
−1.

F( f ) =

∫ ∞

−∞

F(t)e−2πi f tdt (2)

There are several useful properties of the Fourier transform
(F ) which make it suitable for the analysis of periodic sinusoidal
signals.

1. The Fourier transform is linear - for two functions A and B,
F (A + B) = F (A) + F (B).

2. A timeshift of the F(t) function changes the phase of the sig-
nal only - the amplitude is unchanged.

3. The Fourier transform of a sinusoidal signal at frequency f
is the sum of delta functions at ± f .

This combination of properties mean that the Fourier transform
of any signal which is a sum of sinusoidal signals will be delta
functions at the peaks of the frequency of each individual sinu-
soid. The power spectrum of the fourier transform can also be
computed by

P = |F( f )|2 (3)

This removes the phase component of the signal as well as the
complex components of the Fourier transform. For a real input
(as generally dealt with in astronomy) the power spectrum is real
and even.

Fig. 1. Plot showing Dirac comb sampling function for pulsar data, with
spacing every 4ms.

2.0.1. Convolution Theorem

Convolution (denoted by ∗) is a mathematical process to pro-
duce a function from two input functions that quantifies how one
function changes the shape of the other. It is equivalent to mov-
ing two functions past each other and integrating at each point.
The convolution theorem states that for two functions a and b

F (a ∗ b) = F (a) · F (b) (4)

and vice-versa F (a · b) = F (a) ∗ F (b).
Convolution is important for looking at how the way in

which the data is sampled affects the resulting Fourier transform.
It can be seen from the convolution theorem that the Fourier
transform of the signal is the transform of the dot-product of
the underlying functions in the signal. These functions include
the true continuous signal, and other functions introduced by the
measurement of the signal. The functions introduced by measur-
ing the signal are known as sampling functions.

2.0.2. Sampling

One common form of sampling in astronomy is a window func-
tion, which quantifies the effect of sampling a continuous func-
tion for a finite time. This has the effect of replacing the Dirac
delta peaks in the frequency space into sinc functions - effec-
tively causing the very narrow delta peaks to spread out. The
larger the sampling period the smaller this effect is, as the sinc
functions has frequency width 1/(N∆T ) where N∆T is the total
length of the observations (VanderPlas 2018). It also has the ef-
fect of producing small sidelobes in the data. Collectively these
are known as the Window effect.

Another sampling function comes from the effect of sam-
pling a continuous function at uniform discrete intervals, known
as a Dirac comb. The sampling occurs instantaneously compared
to the spacing between samples. This sampling is the product of
the Dirac comb and the true signal. The Dirac comb for the ob-
servations of the pulsar can be seen in Figure 1, with spacing T =
4 ms. The effect of the Fourier transform on the Dirac comb ac-
tually reproduces a Dirac comb in frequency space, with spacing
1/T. This means that the fourier transform of the underlying sig-
nal is actually reproduced every 1/T period in frequency space.
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The only frequencies that can therefore be determined are be-
tween 0 and 1/T, as every frequency outside this range is actually
just a repeat (Butz 2006).

The Nyquist sampling theorem (Nyquist 1928), states that
only a signal whose Fourier transforms fits between the teeth
of the Dirac comb can actually be recovered by regular discrete
observations of a certain period. This means that for a sinusoidal
signal sampled at a rate of f = 1/∆T , the highest frequency that
can be recovered is f /2. This is known as the Nyquist frequency
(VanderPlas 2018).

The maximum range of detectable frequencies can be deter-
mined, with the upper limit being the Nyquist frequency fN =
1/(2∆T ), and the lower limit 1/(N∆T )). The effect of the sinc
function also means that only differences in frequency greater
than 1/(N∆T ) can be detected, which gives the frequency reso-
lution of our Fourier transform. If the signal contains frequencies
greater than that of the Nyquist frequency, they will not be cor-
rectly sampled. This is known as aliasing, and leads to repeated
peaks every 2 fN (Nyquist frequency), which means that some
of the peaks in the data will be due to negative frequency peaks
repeated every 2 fN .

The effects of both of these sampling functions will be seen
when analysing the Fourier transforms of discrete, finite signals.

The other consequence of analysing discrete, finite data is
that the discrete fourier transform must be used which moves
from an integral to a summation. The discrete Fourier transform
can be written in either complex exponential form:

ak =
1
N

N−1∑
t=0

xt e2πikt/N (5)

or as a set of sinusoidal functions:

Ak =
1
N

N−1∑
t=0

xt cos
2πkt

N
, Bk =

1
N

N−1∑
t=0

xt sin
2πkt

N
(6)

where ak = Ak + iBk and k = 1 ... N − 1 (Altamirano 2021).
The discrete fourier transform essentially decomposes the

signal into N sinusoidal waves, but half of them are mirrored
in negative frequency space, meaning that actually only N/2 dis-
tinct frequencies can be resolved. This is a consequence of the
Nyquist sampling theorem.

Computing the Fourier transform for a large number of
points is a very computationally expensive process, of order
O(N2). Modern applications use a fast fourier transform (FFT)
(Cooley and Tukey 1965) which is a O(N) = NlogN process,
allowing much faster computation. The standard FFT algorithm
will be used as comparison for my implementation of the Fourier
transform.

3. Method

3.1. Fourier Transform

I will be using a modified variation of the above sinusoidal
fourier transform (Equation 6) which minimises the number of
sinusoidal functions that need to be evaluated. It is taken from
Altamirano 2021. The U coefficients are given in Equation 7,
with UN+1 = UN = 0; and then computed for n = N − 1,N −
2 · · · 0.

Un = xn + 2 cos θUn+1 − Un+2 (7)

Fig. 2. Figure showing the pulsar intensity (in arbitrary units) as a func-
tion of time.

The two summations given above in Equation 6 can then re-
placed as follows:

N−1∑
n=0

xn cos nθ = U0 − U1 cos θ
N−1∑
n=0

xn sin nθ = U1 sin θ (8)

This is repeated for each value of k, with θ = 2πk/N. Using
Equation 3 the power at each frequency can be computed.

It is computationally faster than the traditional Fourier trans-
form, but still much slower than the Fast Fourier transform (im-
plemented using SciPy, Virtanen et al. 2020).

The available data consists of 256 measurements of the in-
tensity of a region of the sky containing a potential pulsar in the
infra-red, measured on an arbitrary scale every 4ms, for a total
length of measurements of 1.024s. It can be seen plotted against
this time scale in Figure 2.

The fourier transform algorithm is implemented using
Python, along with the pandas and NumPy (Harris et al. (2020))
packages. Pandas was used to store the data in an easily accessi-
ble and iterable way, and NumPy is used for its computationally
efficient arrays and trigonometric functions.

It will be used to produce a plot of power (Equation 3) vs
frequency, with peaks at the fundamental frequency and subse-
quent harmonics. The locations of the will be estimated using a
peak-finding algorithm from the SciPy signal-processing library
(Virtanen et al. 2020).

3.2. Phase Binning

Once I have an estimate of the fundamental frequency f of the
pulsar I will use phase binning to increase the accuracy of the
estimate of the fundamental frequency. The total length of the
original observations is split into a number of sections, each one
period of time 1

f . The number of sections is given by the length
of the signal T multiplied by the fundamental frequency. These
individual sections are then further split into L bins. The num-
ber of bins used is important, as using too many bins has been
shown to cause issues as for large L some of the bins do not
have any points binned into them. The number of bins will be
maximised to ensure the greatest waveform resolution possible
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while ensuring all the bins are used. The data points in each sec-
tion are binned into the L bins, with the same bins used for each
section, so that all the data points are contained in one of the L
bins. All the items in each bin are summed and then normalised
by the number of items, then used to produce a histogram. The
specifics of the maths of this can be seen in Altamirano 2021 and
is not repeated here.

For the true fundamental frequency the histogram will ap-
proximate the sinusoidal shape of the true signal, and for an
incorrect frequencies the binned intensities will approximately
cancel out, so there will be little structure in the signal. This
method should cancel out random noise in the signal, as it will
not be periodic. This phase-binning technique improves the sig-
nal to noise ratio of the signal when used at the correct funda-
mental frequency.

The amount of structure in two signals can be compared by
comparing the variation of the signal - a large variation between
points and suggests there is more structure. I will use the stan-
dard deviation s because it is more resistant to outliers than a
simpler method such as taking the range of the histogram. The
variance is the square root of the average of the squared deviation
from the mean given by

s =

√∑
bins(Xi − X̄)2

N − 1
(9)

where Xi is an individual bin measurement, and X̄ is the mean of
the bins.

For a small range around the fundamental frequency the
variance of the histogram at that frequency can be computed
and used to produce a plot of standard deviation vs frequency.
The peak of the variance will give the fundamental frequency
of the pulsar, and the full-width half maximum of the variance
peak will give a measure of the uncertainty of the fundamen-
tal frequency. The full-width half maximum is the distance from
the fundamental frequency when the standard deviation has de-
creased to half of its peak value. This will allow a more accurate
estimate of the fundamental frequency and its error than Fourier
Analysis provides.

3.3. Recreating the periodic signal

Once an estimate of the fundamental frequency is found, the pe-
riodic component of the symbol can be modelled using a series
of Least-Squares fits of a periodic model of form

F(t, f ) = C f sin
(
2π f

(
t − φ f

))
+ A (10)

with varying amplitude C f and φ f , for an oscillation around the
constant value A, for the fundamental frequencies and the 2 f , 3 f
. . . harmonics. The fit is done by the standard least squares fit -
by minimising χ2 to find the best fit at each frequency. The effect
of including N harmonics is the same as computing this sum for
the fit for N harmonics.

y =

N∑
i=1

Ci sin(ω0i · t + φi) + A (11)

By including the higher order harmonics - including those out-
side the range of the Nyquist frequency, it should be possible to
recreate the Fourier spectrum of the pulsar data by computing the
fourier transform of the synthetic signal. This will allow me to
confirm aliasing as the cause of frequency peaks in the signal. It
is also a good test of the estimate of the fundamental frequency,

as if the fundamental frequency is different to the estimates the
peaks will not line up. This technique is similar to that used in
many of the periodogram methods, such as the Lomb-Scargle
Periodogram (Astropy Collaboration et al. 2013, Astropy Col-
laboration et al. 2018).

4. Results and Discussion

4.1. Testing the Fourier Transform

Looking at the signal in Figure 2 there is a larger amount of
variation, but by eye it is not possible to see a clear sinusoidal
pattern that would be immediately suggest the signal was from a
pulsar. The fourier transform will have to be used to more closely
examine the signal.

Before the new fourier transform algorithm is applied to the
potential pulsar data, it is useful to check that it works correctly
on some test data. It produces very similar, although not pre-
cisely identical results to the FFT, as can be seen in Figure 4. Fig-
ure 4 shows the Fourier transform of a synthetic sinusoidal sig-
nal, showing the fourier power peaks at the correct frequencies
for both implementations of the Fourier transform. The width
and relative height of the peaks are slightly different however,
although the overall signal is still very clear. The fourier trans-
form is also still able to identify the true fundamental frequen-
cies when the input signal is distorted by the addition of some
randomly distributed noise.

4.2. Fourier Analysis of Pulsar Data

The theoretical limits for this data can easily be computed, given
the number of data points (256) and the separation between them
(4 ms). The lower limit for frequency, given in Section 2.0.2, is
0.98 Hz, and the upper (Nyquist) limit is 125Hz. The resolution
in frequency space is also 0.98 Hz, so there are 128 separate fre-
quencies that can be distinguished. Frequencies closer together
than 0.98 Hz can’t be distinguished given the time resolution
of our data. The reason there are only 128 separate frequencies,
which is N/2, is because the data is real and positive. This means
it is mirrored in f = 0 and so the negative half is cut-off as it
doesn’t have physical significance.

The fourier transform can now be applied to the data with a
potential pulsar signal. The result of this can be seen in Figure
3. On the left the comparison of the SciPy FFT and my Fourier
transform algorithm is shown. There are strong periodic signals
in the supposed data, which suggests it is highly likely that the
signal contains a pulsar. The next step is to constrain the funda-
mental frequency of the pulsar.

On the right the Fourier transform is shown with labelled
frequency peaks. There are large peaks at (30.3±1) Hz, (59.6±1)
Hz, (89.8 ± 1) Hz, (99.6 ± 1) Hz, and (121.1 ± 1) Hz, along with
smaller peaks at (41.0± 1) Hz, (70.3± 1) Hz, and (83.0± 1) Hz.

Qualitatively many of the peaks are matched between the two
signals, although the SciPy FFT appears to have a larger level of
noise (non-zero fourier power at many frequencies.) The relative
intensities of the peaks are also both similar, with both having
a large peak at (30.3 ± 1), a maximum at (60.6 ± 1) and similar
peaks at the other harmonics.

This suggest the fundamental frequency is somewhere
around (30.3 ± 1) Hz, which explains the frequency peaks given
in Table 1 for the first 4 harmonics. The table shows the expected
and actual locations of the frequency peaks.

Some of the larger harmonics, which are above the 125 Hz
Nyquist limit, are shown in Table 2. In Section 2.0.2, the effect of
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Fig. 3. Figure a (left) shows my Fourier transform and the SciPy FFT of the pulsar data as a function of frequency, with arbitrary intensity. Figure
b (right) shows my fourier transform of the pulsar data as a function of frequency, with Leahy normalised (2/N) intensity. The locations of intensity
peaks are shown.

Fig. 4. Figure showing my Fourier Transform and the SciPy FFT for a
synthetic sinusoidal signal, consisting of the sum of 2 sine waves at 5
Hz and 10Hz.

Harmonic Expected Frequency (Hz) Actual Frequency (Hz)
1 30.3 (±1) 30.3 (±1)
2 60.6 (±2) 59.6 (±1)
3 90.9 (±3) 89.9 (±1)
4 121.3 (±4) 121.1 (±1)

Table 1. Table showing actual and predicted location of first 4 harmon-
ics given the estimate for the fundamental frequency of the pulsar.

signals above the Nyquist frequency fN was described. It leads
to an effect called aliasing, and the repetition of peaks every 2 fN .
Since the peaks are also reflected into negative frequency space,
there will be a repeated peak at -f + 2 fN as shown in the 4th col-
umn of Table 2. The locations of these peaks are within error of
observed peaks that can’t otherwise be explained by harmonics
(not an integer multiple of the fundamental frequency).

Harmonic Expected
Frequency (Hz)

Actual
Frequency (Hz) − f + 2 × fN (Hz)

5 151.5 (±5) 99.6 (±1) 98.5 (±6)
6 181.8 (±6) 70.3 (±1) 68.2 (±7)
7 212.2 (±7) 41.0 (±1) 37.8 (±8)
8 242.4 (±8) 9.8 (±1) 7.6 (±9)

Table 2. Table showing actual and predicted location of the 5th-8th har-
monics given the estimate for the fundamental frequency of the pulsar
and the effect of aliasing on the shifting of the peaks. The 4th column
shows the predicted location of the aliased peak (repeated every 2 fN).

4.3. Phase Binning

Firstly it is useful to check that the phase-binning algorithm ex-
plained in Section 3.2 works as expected since it is a new im-
plementation. Figure shows a noisy sinusoidal signal of known
frequency. The noise is generated by adding a value taken from
the normal distribution (x̄ = 0, σ2 = 1 ) and Figure shows the re-
sult of phase binning to recreate the underlying sinusoidal wave.
The phase-binned wave follows the shape of the actual wave,
suggesting the phase-binning method works as expected.

Figure 7 shows the pulsar signal split into sections, defined
by the estimate for the fundamental frequency f of the pulsar ( f
sections/second), Each section is then further split into 10 bins,
shown in green.

This was then repeated for 0.1Hz frequency intervals around
30Hz, from 28 Hz to 32 Hz. It can be seen in Figure 8. There was
a rough baseline of noise around a standard deviation of 40 but
a clear peak at 29.9+0.42

−0.22 Hz can be seen. The error is computed
from the frequency difference at the half maximum of the peak of
the standard deviation and the FWHM of the peak was 0.64Hz.

The waveform for any of these period-binned frequencies
can be recreated, and is shown in Figure 9 for the 29.9 Hz peak.
The dependence on the number of bins is also shown, as the
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Fig. 5. Figure showing a synthetic sinusoidal signal (amplitude vs time)
modified by the addition of some normally generated noise. Generated
to show the phase-binning technique.

Fig. 6. Figure showing the signal from Figure 5 phase-binned at the
known frequency of 0.1 Hz (in blue), along with the actual underlying
sinusoidal signal (in green), demonstrating the efficacy of the phase-
binning technique.

waveforms for integer numbers of bins between 8 and 13 are
labelled.

The number of bins was chosen as 10 to recreate the highest
resolution estimate of the waveform possible while also ensuring
no bins were left empty. For higher frequencies greater numbers
of bins left gaps in the variance graph where no points had been
binned into them, leading to a 0/0 in the normalisation condition.

The number of bins can be seen to have a rather small impact
on the shape of the waveform as the waveforms approximate the
same sinusoidal shape for a range of bins. The exact shape of the
sinusoid produced in Figure 9 is not perfectly sinusoidal for a
number of reasons. Firstly the phase-binning method is not that
resilient to even non-periodic noise, as can be seen in Figure 6,
meaning the recreated signal will be distorted by noise in the un-

Fig. 7. Pulsar signal shown with the split into sections (in orange), de-
fined by the fundamental frequency 30 Hz, and each further split into
10 bins (green).

Fig. 8. Figure showing the peak of standard deviation around the funda-
mental frequency. The peak of 29.9+0.42

−0.22 Hz with a FWHM of 0.64 Hz is
shown. The frequency resolution is 0.1Hz.

derlying signal. Secondly the signal doesn’t present as purely si-
nusoidal but as a superposition of harmonics, so an entirely clean
sinusoidal frequency at one frequency can’t be extracted due to
the effect of the harmonics. Finally although the standard devia-
tion peak is at 29.9 Hz, the errors associated mean that the true
frequency could be anywhere between 29.68 Hz and 30.32 Hz
and still be within error. Any frequency within this range could
be used to produce a phase-binned waveform that would look
qualitatively different to Figure 9. This is why the more quan-
titative method of measuring the standard deviation was used
instead of a by-eye analysis of a set of phase-binned waveforms.

4.4. Recreating the Waveform

Using the method outlined in 3.3 the pulsar signal was fitted
with a sinusoidal function at the fundamental frequency and
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Fig. 9. Phase-binned wave form for 29.9 Hz, as a function of intensity
vs 1 period. The effect of varying the number of bins is shown.

the higher harmonics. This fit was done using SciPy’s curve_fit
function, which uses least squares fitting to fit the free param-
eters (amplitude ai, phase φi and constant c, as seen in Equa-
tion 11). These fits were added together to produce a synthetic
model of the actual pulsar emission as can be seen in the top
graph of Figure 10. This was done up to the 12th harmonic, as
above this point it was a case of diminishing returns as all the
main frequency features had been recreated. The synthetic sig-
nal was generated with a very fine timestep and over a longer
period of time, to approximate the continuous nature of the pul-
sar emission, and then the window function and sampling func-
tions shown in the 2nd and 3rd graphs were applied to produce
a signal more directly comparable to what was actually recorded
as is described in the Section 2.0.2. The 4th graph shows the
fourier transform of this sampled and windowed signal. The fun-
damental frequency used to generate the sinusoidal signal was
the 29.9+0.42

−0.22 Hz estimate from the phase-binning technique since
the uncertainty was smaller, and the fit was visibly better. When
using multiples of 30.3 Hz the locations of some of the higher
order peaks no longer precisely matched and the amplitude of
the synthetic signal was smaller than the true signal.

In Figure 11 the synthetic signal and the actual signal are
compared. It can be seen that many of the frequency peaks and
troughs line up. The original pulsar frequency has a non-periodic
variation in the magnitudes peak and trough values which is
likely due to noise, which is not reproduced in the synthetic sig-
nal, however the locations of the peaks and troughs match up rea-
sonably well. Since the locations of the higher harmonics have
an increasingly larger uncertainty (as they are a multiple of the
30.3± 1 Hz fundamental frequency) there is an error in this syn-
thetic signal which can’t easily be quanitified. The finite widths
of the peaks, due to the window function (see section 2.0.2), is
also reproduced well since the synthetic signal is of the same
length and time resolution as the original signal.

The fourier transform of this synthetic signal can then be
compared to the fourier transform of the actual pulsar data as
is shown in in Figure 12. Nearly all of the significant peaks iden-
tified in Section 4.2 are recreated, which backs up the estimate
of the fundamental frequency of 29.9+0.42

−0.22 Hz. The relative pow-
ers of the peaks are also reproduced relatively accurately (in a

Fig. 10. Graphs showing the creation of a model of the periodic compo-
nent of the pulsar signal. The first graph shows the continuous function
along with the equation used to generate it, the 2nd and 3rd graphs show
the window and sampling functions (the sampling function is a uniform
comb, however the lines are too close to be displayed properly.) used to
compare it to the observed pulsar signal. All x-axis until now are time
in seconds. The last graph shows the fourier transform of the synthetic
signal.

qualitative sense), including the maximum at around (60±1)Hz.
Several smaller peaks are not reproduced well, such as around
40Hz and 80 Hz, and it is likely these peaks would be explained
by the superposition of higher order harmonics that haven’t been
included. There is also a degree of noise in the original fourier
transform that isn’t reproduced in the synthetic signal.

Figure 13 shows the effect of including higher harmonics on
the frequency spectrum of the synthetic signal. It is the equiva-
lent of increasing N in the sum in Equation 11. The peaks caused
by each harmonic can be seen. The frequency peaks added by
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Fig. 11. Figure showing a comparison of the synthetic signal (green)
and the actual pulsar signal (blue).

Fig. 12. Figure showing a comparison of the fourier transform of the
synthetic signal (green) and the fourier transform of the actual pulsar
signal (blue).

the inclusion of each harmonic agree with the predictions given
in Table 2, suggesting the hypothesis of aliasing as the cause is
correct. The peaks beyond the Nyquist limit are shifted to the fre-
quency predicted in the table. By the 12th harmonic the fourier
transform of the synthetic signal explains most of the features in
the fourier transform of the pulsar signal seen in Figure 3.

From the different techniques used to estimate the funda-
mental frequency several slightly different results have been ob-
tained. Firstly from the fourier analysis method the estimate was
30.3 ± 1 Hz. For the phase-binning method the estimate of the
fundamental frequency was 29.9+0.42

−0.22 Hz. Both of these results
agree as they are within error of the other, and as they are inde-
pendent methods they suggest this result is credible. The gener-
ation of the synthetic signal favours the phase-binning result, as
using multiples of the fourier result for the harmonics resulted in

a fourier transform with visibly shifted peaks. However due to
the error on the fundamental frequencies the locations of the up-
per harmonics peaks have increasingly large errors so this is not
a definitive result. With a fundamental frequency of this magni-
tude the pulsar does not spin fast enough to qualify as a milli-
second pulsar, which generally have to spin between 100 and
1000 Hz (Taylor 1991).

4.5. Improvements

There are a number of improvements that could be made to fur-
ther constrain the fundamental frequency of the pulsar, and to
learn more about it.

Firstly, if the data provided had a greater number of points
(i.e. was recorded for a long period of time), at the same time
resolution, the uncertainty in the fundamental frequency could
be reduced. For example, if 4x as much data was available, the
fundamental frequency could be constrained to less than 0.25Hz
instead of 1 Hz.

If the time resolution of the data could be increased, the
range of frequencies and the frequency resolution would both
increase. It would be possible to probe the higher harmonics di-
rectly instead of looking at the aliased peaks.

If observations of this target were recorded accurately over a
long period of time then pulsar timing techniques could be used.
If the time of arrival of a pulse is measured precisely an average
pulse profile can be produced by "pulse folding". This technique
relies on a Lorentz transform to an inertial frame (as the Earth
is orbiting the Sun). There are also corrections for pulsar dis-
persion and other signal delays. These measurements are used
to generate a timing models to predict future pulses, and the de-
viations between the model and the measurements allow the in-
vestigation of unmodelled parameters, such as pulsar glitches,
binary systems or orbiting exoplanets (McKee 2017). If the pul-
sar is timed precisely for enough time the spin down rate can
be determined. To use these techniques much more info on the
target would also be needed, such as its location in the sky, the
instrument and telescope used to observe it, precise timing of
the arrival of the signals and the associated units/uncertainties of
the observations. Knowing more about the characteristics of the
object, any intervening medium, and the telescope and detector
used would allow for a more rigorous analysis of the uncertain-
ties in the signal. This would also allow more research to be done
on the target by cross-referencing with publicly accessible data
on services like SIMBAD (Wenger et al. 2000). It would also
be possible to directly cross-reference with pulsar catalogues to
ensure this is a new object.
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T. Harvey : F1: Analysis of a Suspected Pulsar in the IR

Fig. 13. These graphs show the fourier transform of the synthetic signal with the inclusion of increasing numbers of harmonics, demonstrating
which frequency peaks are created by which harmonics. All the x-axis are Frequency in units of Hz, and the y-axis is normalised.

5. Conclusions

1. The fourier spectrum of a signal from a region of the sky
thought to contain a pulsar has been produced.

2. The fourier spectrum has been shown to contain evidence
of a sinusoidal signal oscillating at a fundamental frequency
of 30.3 ± 1 Hz, along with harmonics at multiples of this
frequency, suggesting the presence of a pulsar.

3. The cause of frequency peaks at frequencies not an integer
multiple of the fundamental frequency has been identified
as the effect of aliasing from frequency peaks of harmonics
above the 125Hz Nyquist frequency of the signal. The re-
lationship between the expected frequency of the peaks and
the aliased frequency is shown both in theory and experimen-
tally.

4. Phase-binning has been used to confirm the estimate of the
fundamental frequency by locating the peak of standard de-
viation of the signal when binned at different frequencies.
The pulsar frequency was determined by this method to be
29.9+0.42

−0.22 Hz which is within error of the previous estimate.
5. The periodic component of the signal has been modelled as

a sum of sinusoidal waves and fitted using a Least Squares
algorithm (SciPy’s curve_fit) to reproduce the underlying pe-
riodic signal.

6. The Fourier spectrum of the synthetic signal has been shown
to reproduce the same locations and relative sizes of the fre-
quency peaks as the fourier spectrum of the original pulsar
data.

7. Further observations could be used to further constrain the
frequency of the pulsar, and measurement of the spin down

rate could be used to estimate other properties of the pulsar,
such as magnetic field strength.
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Lim, P. L., Crawford, S. M., Conseil, S., Shupe, D. L., Craig, M. W.,
Dencheva, N., Ginsburg, A., VanderPlas, J. T., Bradley, L. D., Pérez-Suárez,
D., de Val-Borro, M., Aldcroft, T. L., Cruz, K. L., Robitaille, T. P., Tollerud,
E. J., Ardelean, C., Babej, T., Bach, Y. P., Bachetti, M., Bakanov, A. V., Bam-
ford, S. P., Barentsen, G., Barmby, P., Baumbach, A., Berry, K. L., Biscani, F.,
Boquien, M., Bostroem, K. A., Bouma, L. G., Brammer, G. B., Bray, E. M.,
Breytenbach, H., Buddelmeijer, H., Burke, D. J., Calderone, G., Cano Ro-
dríguez, J. L., Cara, M., Cardoso, J. V. M., Cheedella, S., Copin, Y., Corrales,
L., Crichton, D., D’Avella, D., Deil, C., Depagne, É., Dietrich, J. P., Donath,
A., Droettboom, M., Earl, N., Erben, T., Fabbro, S., Ferreira, L. A., Finethy,
T., Fox, R. T., Garrison, L. H., Gibbons, S. L. J., Goldstein, D. A., Gom-
mers, R., Greco, J. P., Greenfield, P., Groener, A. M., Grollier, F., Hagen, A.,
Hirst, P., Homeier, D., Horton, A. J., Hosseinzadeh, G., Hu, L., Hunkeler,
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